Олимпиадные задачи по математике для 3-11 класса - сложность 5 с решениями

На плоскости даны две замкнутые ломаные $a,b$ (возможно, самопересекающиеся) и точки $K$, $L$, $M$, $N$. Вершины ломаных и эти точки находятся в общем положении (т.е. никакие три из них не лежат на прямой и никакие три отрезка, их соединяющие, не имеют общей внутренней точки). Каждый из отрезков $KL$ и $MN$ пересекает ломаную $a$ в четном количестве точек, а каждый из отрезков $LM$ и $NK$ – в нечетном. Ломаная $b$, наоборот, пересекает каждый из отрезков $KL$ и $MN$ в нечетном количестве точек, а каждый из отрезков $LM$ и $NK$ – в четном. Докажите, что ломаные $a$ и $b$ пересекаются.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка