Олимпиадные задачи по математике для 11 класса
Квадратные трёхчлены <i>P</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i> и <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>cx + d</i> таковы, что уравнение <i>P</i>(<i>Q</i>(<i>x</i>)) = <i>Q</i>(<i>P</i>(<i>x</i>)) не имеет действительных корней.
Докажите, что <i>b ≠ d </i>.
Пусть <i>P</i>(<i>x</i>) – многочлен нечётной степени. Докажите, что уравнение <i>P</i>(<i>P</i>(<i>x</i>)) = 0 имеет не меньше различных действительных корней, чем уравнение <i>P</i>(<i>x</i>) = 0.
Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр?
Имеется квадрат клетчатой бумаги размером 102×102 клетки и связная фигура неизвестной формы, состоящая из 101 клетки. Какое наибольшее число таких фигур можно с гарантией вырезать из этого квадрата? Фигура, составленная из клеток, называется связной, если любые две ее клетки можно соединить цепочкой ее клеток, в которой любые две соседние клетки имеют общую сторону.
Многочлен <i>P</i>(<i>x</i>) степени <i>n</i> имеет <i>n</i> различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?
Какое наибольшее конечное число корней может иметь уравнение <center><i>
|x-a<sub>1</sub>|+..+|x-a</i>50<i>|=|x-b<sub>1</sub>|+..+|x-b</i>50<i>|,
</i></center> где<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a</i>50,<i> b<sub>1</sub> </i>,<i> b<sub>2</sub> </i>,<i> b</i>50– различные числа?
Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов вида <i>x</i>² + <i>px + q</i>, среди коэффициентов <i>p</i> и <i>q</i> которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений?
В вершинах выпуклого <i>n</i>-угольника расставлены <i>m</i> фишек (<i>m > n</i>). За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине <i>n</i>-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно <i>n</i>.
На доске написано <i>n</i> выражений вида *<i>x</i>² + *<i>x</i> + * = 0 (<i>n</i> – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3<i>n</i> ходов получится <i>n</i> квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?
На плоскости отметили все вершины правильного <i>n</i>-угольника, а также его центр. Затем нарисовали контур этого <i>n</i>-угольника, и центр соединили со всеми вершинами; в итоге <i>n</i>-угольник разбился на <i>n</i> треугольников. Вася записал в каждую отмеченную точку по числу (среди чисел могут быть равные). В каждый треугольник разбиения он записал в произвольном порядке три числа, стоящих в его вершинах; после этого он стёр числа в отмеченных точках. При каких <i>n</i> по тройкам чисел, записанным в треугольниках, Петя всегда сможет восстановить число в каждой отмеченной точке?