Олимпиадные задачи по математике для 10 класса

Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй.

Среди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?

Петя придумал 1004 приведённых квадратных трёхчлена  <i>f</i><sub>1</sub>, ...,  <i>f</i><sub>1004</sub>,  среди корней которых встречаются все целые числа от 0 до 2007. Вася рассматривает всевозможные уравнения  <i>f<sub>i</sub> = f<sub>j</sub></i>  (<i>i ≠ j</i>),  и за каждый найденный у них корень Петя платит Васе по рублю. Каков наименьший возможный доход Васи?

На плоскости отметили <i>n</i>  (<i>n</i> > 2)  прямых, проходящих через одну точку <i>O</i> таким образом, что для каждых двух из них найдётся такая отмеченная прямая, которая делит пополам одну из пар вертикальных углов, образованных этими прямыми. Докажите, что проведённые прямые делят полный угол на равные части.

Квадратные трёхчлены  <i>P</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>  и  <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>cx + d</i>  таковы, что уравнение  <i>P</i>(<i>Q</i>(<i>x</i>)) = <i>Q</i>(<i>P</i>(<i>x</i>))  не имеет действительных корней.

Докажите, что  <i>b ≠ d </i>.

Пусть <i>P</i>(<i>x</i>) – многочлен нечётной степени. Докажите, что уравнение  <i>P</i>(<i>P</i>(<i>x</i>)) = 0  имеет не меньше различных действительных корней, чем уравнение  <i>P</i>(<i>x</i>) = 0.

В стране 2000 городов. Каждый город связан беспосадочными двусторонними авиалиниями с некоторыми другими городами, причём для каждого города число исходящих из него авиалиний есть степень двойки (то есть 1, 2, 4, 8, ...). Для каждого города <i>A</i> статистик подсчитал количество маршрутов, имеющих не более одной пересадки, связывающих <i>A</i> с другими городами, а затем просуммировал полученные результаты по всем 2000 городам. У него получилось 100000. Докажите, что статистик ошибся.

Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр?

Корни двух приведённых квадратных трёхчленов – отрицательные целые числа, причём один из этих корней – общий.

Могут ли значения этих трёхчленов в некоторой положительной целой точке равняться 19 и 98?

Имеется квадрат клетчатой бумаги размером 102×102 клетки и связная фигура неизвестной формы, состоящая из 101 клетки. Какое наибольшее число таких фигур можно с гарантией вырезать из этого квадрата? Фигура, составленная из клеток, называется связной, если любые две ее клетки можно соединить цепочкой ее клеток, в которой любые две соседние клетки имеют общую сторону.

Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции:

  1) проверять, равны ли выбранные два числа,

  2) складывать выбранные числа,

  3) по выбранным числам <i>a</i> и <i>b</i> находить корни уравнения  <i>x</i>² + <i>ax + b</i> = 0,  а если корней нет, выдавать сообщение об этом.

Результаты всех действий заносятся в память. Первоначально в памяти записано одно число <i>x</i>. Как с помощью МК-97 узнать, равно ли это число единице?

Многочлен <i>P</i>(<i>x</i>) степени <i>n</i> имеет <i>n</i> различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?

Какое наибольшее конечное число корней может иметь уравнение <center><i>

|x-a<sub>1</sub>|+..+|x-a</i>50<i>|=|x-b<sub>1</sub>|+..+|x-b</i>50<i>|,

</i></center> где<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a</i>50,<i> b<sub>1</sub> </i>,<i> b<sub>2</sub> </i>,<i> b</i>50– различные числа?

Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов вида  <i>x</i>² + <i>px + q</i>,  среди коэффициентов <i>p</i> и <i>q</i> которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений?

В вершинах выпуклого <i>n</i>-угольника расставлены <i>m</i> фишек  (<i>m > n</i>).  За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине <i>n</i>-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно <i>n</i>.

На доске написано <i>n</i> выражений вида  *<i>x</i>² + *<i>x</i> + * = 0  (<i>n</i> – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3<i>n</i> ходов получится <i>n</i> квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?

На плоскости отметили все вершины правильного <i>n</i>-угольника, а также его центр. Затем нарисовали контур этого <i>n</i>-угольника, и центр соединили со всеми вершинами; в итоге <i>n</i>-угольник разбился на <i>n</i> треугольников. Вася записал в каждую отмеченную точку по числу (среди чисел могут быть равные). В каждый треугольник разбиения он записал в произвольном порядке три числа, стоящих в его вершинах; после этого он стёр числа в отмеченных точках. При каких <i>n</i> по тройкам чисел, записанным в треугольниках, Петя всегда сможет восстановить число в каждой отмеченной точке?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка