Олимпиадные задачи по математике для 7-8 класса
Дан выпуклый четырёхугольник <i>ABCD</i>. Обозначим через <i>R<sub>a</sub>, R<sub>b</sub>, R<sub>c</sub></i> и <i>R<sub>d</sub></i> радиусы описанных окружностей треугольников <i>DAB, ABC, BCD, CDA</i>. Докажите, что неравенство <i>R<sub>a</sub> < R<sub>b</sub> < R<sub>c</sub> < R<sub>d</sub></i> выполняется тогда и только тогда, когда 180° – ∠<i>CDB</i> < ∠<i>CAB</i> < ∠<i>CDB</i>.
Даны многоугольник, прямая <i>l</i> и точка <i>P</i> на прямой <i>l</i> в общем положении (то есть все прямые, содержащие стороны многоугольника, пересекают <i>l</i> в различных точках, отличных от <i>P</i>). Отметим те вершины многоугольника, для каждой из которых прямые, на которых лежат выходящие из неё стороны многоугольника, пересекают <i>l</i> по разные стороны от точки <i>P</i>. Докажите, что точка <i>P</i> лежит внутри многоугольника тогда и только тогда, когда по каждую сторону от <i>l</i> отмечено нечётное число вершин.