Олимпиадные задачи по математике для 2-7 класса - сложность 3 с решениями
В стране несколько городов, некоторые пары городов соединены беспосадочными рейсами одной из <i>N</i> авиакомпаний, причём из каждого города есть ровно по одному рейсу каждой из авиакомпаний. Известно, что из каждого города можно долететь до любого другого (возможно, с пересадками). Из-за финансового кризиса был закрыт <i>N</i> – 1 рейс, но ни в одной из авиакомпаний не закрыли более одного рейса. Докажите, что по-прежнему из каждого города можно долететь до любого другого.