Олимпиадные задачи по математике для 7-8 класса - сложность 3 с решениями

В каждой клетке таблицы, состоящей из 10 столбцов и <i>n</i> строк, записана цифра. Известно, что для каждой строки <i>A</i> и любых двух столбцов найдётся строка, отличающаяся от <i>A</i> ровно в этих двух столбцах. Докажите, что  <i>n</i> ≥ 512.

На прямой выбрано 100 множеств<i> A<sub>1</sub>, </i><i> A<sub>2</sub>, </i><i> .. , </i><i> A</i>100, каждое из которых является объединением 100 попарно непересекающихся отрезков. Докажите, что пересечение множеств<i> A<sub>1</sub>, </i><i> A<sub>2</sub>, </i><i> .. , </i><i> A</i>100является объединением не более 9901 попарно непересекающихся отрезков (точка также считается отрезком).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка