Олимпиадные задачи по математике для 11 класса - сложность 5 с решениями

Окружность с центром <i> I </i>касается сторон <i> AB </i>,<i> BC </i>,<i> AC </i>неравнобедренного треугольника <i> ABC </i>в точках<i> C<sub>1</sub> </i>,<i> A<sub>1</sub> </i>,<i> B<sub>1</sub> </i>соответственно. Окружности <i> ω<sub>B</sub> </i>и <i> ω<sub>C</sub> </i>вписаны в четырехугольники <i> BA<sub>1</sub>IC<sub>1</sub> </i>и <i> CA<sub>1</sub>IB<sub>1</sub> </i>соответственно. Докажите, что общая внутренняя касательная к <i> ω<sub>B</sub> </i>и <i> ω<sub>C</sub> </i>, отличная от ...

На плоскости отмечены все точки с целыми координатами (<i>x,y</i>)такие, что<i> x<sup>2</sup>+y<sup>2</sup><img align="absmiddle" src="/storage/problem-media/115399/problem_115399_img_2.gif"> </i>10<i></i>10. Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?

В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка