Олимпиадные задачи из источника «43 (2020), математика» для 4-6 класса - сложность 2 с решениями
43 (2020), математика
НазадНа контурной карте России 85 регионов. Вовочка хочет покрасить на карте каждый регион в белый, синий или красный цвет так, чтобы белый и красный цвета не имели общей границы. При этом один или даже два цвета можно не использовать. Докажите, что количество вариантов такой раскраски нечётно.
На лицевой стороне каждой из $6$ карточек Аня написала черным или красным фломастером по натуральному числу. При этом каждым цветом Аня написала хотя бы два числа. Затем Боря взял каждую карточку, посмотрел, каким цветом на ней написано число, перемножил все Анины числа того же цвета на других карточках и записал результат на обороте карточки (если другая карточка того же цвета всего одна, то Боря пишет число с этой одной карточки).
Мы видим обороты, на которых написаны числа $18$, $23$, $42$, $42$, $47$, $63$. А что написано на лицевых сторонах этих карточек?
Пит М. на квадратном холсте нарисовал композицию из прямоугольников. На рисунке даны площади нескольких прямоугольников, в том числе синего и красного квадратов. Чему равна сумма площадей двух серых прямоугольников? <img src="/storage/problem-media/66635/problem_66635_img_2.png">