Олимпиадные задачи из источника «35 (2012), математика» для 9 класса - сложность 2 с решениями
35 (2012), математика
НазадВерно ли, что в вершинах любого треугольника можно расставить положительные числа так, чтобы сумма чисел в концах каждой стороны треугольника равнялась длине этой стороны?
В каждой клетке клетчатого квадрата 7×7 стоит по числу. Сумма чисел в каждом квадратике 2×2 и 3×3 равна 0.
Докажите, что сумма чисел в 24 клетках, расположенных по периметру квадрата, тоже равна 0.
Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:<div align="center"><img src="/storage/problem-media/116812/problem_116812_img_2.gif"></div> Могло ли такое быть?