Олимпиадные задачи из источника «34 (2011), математика» для 8 класса - сложность 3-4 с решениями

На доске начерчен выпуклый четырёхугольник. Алёша утверждает, что его можно разрезать диагональю на два остроугольных треугольника. Боря – что можно на два прямоугольных, а Вася – что на два тупоугольных.

Оказалось, что ровно один из троих неправ. Про кого можно наверняка утверждать, что он прав?

На дверце сейфа написано произведение степеней<i>a</i><sup><i>n</i></sup><i>b</i><sup><i>m</i></sup><i>c</i><sup><i>k</i></sup>. Чтобы дверца открылась, надо заменить каждую из шести букв натуральным числом так, чтобы в произведении получился куб натурального числа. Пинки, не подумав, уже заменил какие-то три буквы числами. Всегда ли Брейн сможет заменить три оставшиеся, чтобы дверца открылась?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка