Олимпиадные задачи из источника «7 турнир (1985/1986 год)» для 9 класса - сложность 4 с решениями

30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,

  а) четырёх вечеров недостаточно,

  б) пяти вечеров также недостаточно,

  в) а десяти вечеров достаточно,

  г) и даже семи вечеров тоже достаточно.

Игра в "супершахматы" ведётся на доске размером 30×30, и в ней участвуют 20 разных фигур, каждая из которых ходит по своим правилам. Известно, однако, что

  1) любая фигура с любого поля бьёт не более 20 полей и

  2) если фигуру сдвинуть на несколько полей, то битые поля соответственно сдвигаются (может быть, исчезают за пределы поля).

Докажите, что

  а) любая фигура <i>F</i> бьёт данное поле <i>Х</i> не более, чем с 20 полей;

  б) можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка