Олимпиадные задачи из источника «весенний тур, основной вариант, 7-8 класс» для 2-10 класса - сложность 2 с решениями
весенний тур, основной вариант, 7-8 класс
НазадПусть <i>a</i>, <i>b</i>, <i>c</i> – длины сторон <i>BC</i>, <i>AC</i>, <i>AB</i> треугольника <i>ABC</i>, γ = ∠<i>C</i>. Докажите, что <i>c</i> ≥ (<i>a + b</i>) sin <sup>γ</sup>/<sub>2</sub>.
<img align="right" src="/storage/problem-media/97867/problem_97867_img_2.gif">Квадрат разбит на пять прямоугольников так, что четыре угла квадрата являются углами четырёх прямоугольников, площади которых равны между собой, а пятый прямоугольник не имеет общих точек со сторонами квадрата. Докажите, что этот пятый прямоугольник есть квадрат.
а) Привести пример такого положительного <i>a</i>, что {<i>a</i>} + {<sup>1</sup>/<sub><i>a</i></sub>} = 1.
б) Может ли такое <i>a</i> быть рациональным числом?