Олимпиадные задачи из источника «весенний тур, подготовительный вариант, 7-8 класс» для 10-11 класса - сложность 1-4 с решениями

Дана бесконечная клетчатая бумага со стороной клетки, равной единице. Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от одной клетки до другой (считается путь центра ладьи). В какое наименьшее число красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками?

Через <i>P</i>(<i>x</i>) обозначается произведение всех цифр натурального числа <i>x</i>, через <i>S</i>(<i>x</i>) – сумма цифр числа <i>x</i>.

Сколько решений имеет уравнение:   <i>P</i>(<i>P</i>(<i>x</i>)) + <i>P</i>(<i>S</i>(<i>x</i>)) + <i>S</i>(<i>P</i>(<i>x</i>)) + <i>S</i>(<i>S</i>(<i>x</i>)) = 1984 ?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка