Олимпиадные задачи из источника «весенний тур, сложный вариант, 10-11 класс» для 2-8 класса - сложность 2-4 с решениями

В стране, валюта которой — тугрики, ходят только купюры двух целочисленных достоинств. И покупатель, и продавец имеют достаточно много и тех, и других купюр, но при каждом платеже могут использовать вместе не более $k$ купюр (включая сдачу). Известно, что так можно сделать платёж на любую целую сумму от 1 до $n$ тугриков. Каково наибольшее возможное $n$ (в зависимости от $k$)?

Существует ли такое положительное число $x > 1$, что $${x} > {x^2} > {x^3} > \ldots > {x^{100}}?$$ (Здесь ${x}$ — дробная часть числа $x$, то есть разность между $x$ и ближайшим целым числом, не превосходящим $x$.)

Можно ли на бесконечной клетчатой плоскости расставить бесконечное количество шахматных коней (не более одного коня в клетку) так, чтобы каждый конь бил ровно 5 других?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка