Олимпиадные задачи из источника «осенний тур, сложный вариант, 10-11 класс» для 4-11 класса - сложность 3 с решениями

Дан выпуклый четырехугольник $ABCD$ площади $S$. Внутри каждой его стороны отмечено по точке и эти точки последовательно соединены отрезками, так что $ABCD$ разбивается на меньший четырехугольник и $4$ треугольника. Докажите, что хотя бы у одного из этих треугольников площадь не превосходит $\frac{S}{8}$.

Квадрат разбили на несколько прямоугольников так, что центры прямоугольников образуют выпуклый многоугольник. а) Обязательно ли каждый прямоугольник примыкает к стороне квадрата? б) Может ли количество прямоугольников равняться 23?

Для какого наибольшего $N$ существует $N$-значное число со свойством: в его десятичной записи среди любых нескольких подряд идущих цифр какая-то цифра встречается ровно один раз?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка