Олимпиадные задачи из источника «весенний тур, базовый вариант, 10-11 класс» для 1-9 класса - сложность 4-5 с решениями
весенний тур, базовый вариант, 10-11 класс
НазадБесконечные возрастающие арифметические прогрессии $a_{1}, a_{2}, a_{3}, \ldots$ и $b_{1}, b_{2}, b_{3}, \ldots$ состоят из положительных чисел. Известно, что отношение $\frac{a_{k}}{b_{k}}$ целое при любом $k$. Верно ли, что это отношение не зависит от $k$?
Дано натуральное число $n$. Для произвольного числа $x$ рассмотрим сумму
$$ Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\cdots+\left\lfloor\frac{x}{10^{n}}\right\rfloor . $$
Найдите разность $Q\left(10^{n}\right)-Q\left(10^{n}-1\right)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)