Олимпиадные задачи из источника «устный тур» для 4-8 класса - сложность 3 с решениями
устный тур
НазадДан треугольник $ABC$. Пусть $I$ – центр его вписанной окружности, $P$ – такая точка на стороне $AB$, что угол $PIB$ прямой, $Q$ – точка, симметричная точке $I$ относительно вершины $A$. Докажите, что точки $C$, $I$, $P$, $Q$ лежат на одной окружности.
В таблице $44\times 44$ часть клеток синие, а остальные красные. Никакие синие клетки не граничат друг с другом по стороне. Множество красных клеток, наоборот, связно по сторонам (от любой красной клетки можно добраться до любой другой красной, переходя из клетки в клетку через общую сторону и не заходя в синие клетки). Докажите, что синих клеток в таблице меньше трети.