Олимпиадные задачи из источника «весенний тур, сложный вариант, 10-11 класс» для 7-8 класса - сложность 3-5 с решениями

Для каждого из девяти натуральных чисел $n, 2n, 3n, ..., 9n$ выписали на доску первую слева цифру в его десятичной записи. При этом $n$ выбрали так, чтобы среди девяти выписанных цифр количество различных цифр было как можно меньше. Чему равно это количество?

По доске $n$×$n$ прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до $n^2$ в порядке прохождения ладьи. Пусть $M$ – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение $M$?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка