Олимпиадные задачи из источника «весенний тур, базовый вариант, 10-11 класс»

Четырёхугольник $ABCD$ вписан в окружность ω с центром в точке $O$. Описанная окружность Ω треугольника $AOC$ пересекает вторично прямые $AB, BC, CD$ и $DA$ в точках $M, N, K$ и $L$ соответственно. Докажите, что прямые $MN, KL$ и касательные, проведённые к ω в точках $A$ и $C$, касаются одной окружности.

Пусть $n$ – натуральное число. Назовём последовательность $a_1, a_2, ..., a_n$ <i>интересной</i>, если для каждого  $i$ = 1, 2, ..., $n$  верно одно из равенств  $a_i = i$  или  $a_i = i$ + 1.  Назовём интересную последовательность <i>чётной</i>, если сумма её членов чётна, и <i>нечётной</i> – иначе. Для каждой нечётной интересной последовательности нашли произведение её чисел и записали его на первый листок. Для каждой чётной – сделали то же самое и записали на второй листок. На каком листке сумма чисел больше и на сколько? (Дайте ответ в зависимости от $n$.)

На Поле Чудес выросло 8 золотых монет, но стало известно, что ровно три из них фальшивые. Все настоящие монеты весят одинаково, все фальшивые тоже, но они легче настоящих. Лиса Алиса и Буратино собрали монеты и стали их делить. Алиса собирается отдать Буратино три монеты, но он хочет сначала проверить, все ли они настоящие. Сможет ли он сделать это за два взвешивания на чашечных весах без гирь?

Натуральное число умножили на 5, результат снова умножили на 5 и так далее, всего сделали $k$ умножений. Оказалось, что в десятичной записи исходного числа и полученных $k$ чисел нет

цифры 7. Докажите, что существует натуральное число, которое можно $k$ раз умножить на 2, и снова ни в одном числе не будет цифры 7 в его десятичной записи.

Прямоугольник 1×3 будем называть <i>триминошкой</i>. Петя и Вася независимо друг от друга разбивают доску 20×21 на триминошки. Затем они сравнивают полученные разбиения, и Петя платит Васе столько рублей, сколько триминошек в этих двух разбиениях совпали (оказались на одинаковых позициях). Какую наибольшую сумму выигрыша может гарантировать себе Вася независимо от действий Пети?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка