Олимпиадные задачи из источника «осенний тур, базовый вариант, 10-11 класс» для 8 класса - сложность 3 с решениями
осенний тур, базовый вариант, 10-11 класс
НазадПо кругу лежит 101 монета, каждая весит 10 г или 11 г. Докажите, что найдётся монета, для которой суммарная масса $k$ монет слева от неё равна суммарной массе $k$ монет справа от неё, если а) k=50; б) k=49.
Стороны треугольника разделены основаниями биссектрис на два отрезка каждая. Обязательно ли из шести образовавшихся отрезков можно составить два треугольника?
Натуральное число $N$ кратно 2020. В его десятичной записи все цифры различны, причём если любые две из них поменять местами, получится число, не кратное 2020. При каком количестве цифр в десятичной записи числа $N$ такое возможно?