Олимпиадные задачи из источника «осенний тур, сложный вариант, 10-11 класс» для 11 класса - сложность 2 с решениями
осенний тур, сложный вариант, 10-11 класс
НазадОтрезки $AA', BB'$ и $CC'$ с концами на сторонах остроугольного треугольника $ABC$ пересекаются в точке $P$ внутри треугольника. На каждом из этих отрезков как на диаметре построена окружность, в которой перпендикулярно этому диаметру проведена хорда через точку $P$. Оказалось, что три проведённые хорды имеют одинаковую длину. Докажите, что $P$ – точка пересечения высот треугольника $ABC$.
Многочлен $P(x, y)$ таков, что для всякого целого $n\geqslant 0$ каждый из многочленов $P(n, y)$ и $P(x, n)$ либо тождественно равен нулю, либо имеет степень не выше $n$.
Может ли многочлен $P(x, x)$ иметь нечётную степень?