Олимпиадные задачи из источника «осенний тур, тренировочный вариант, 8-9 класс» для 10 класса - сложность 2-3 с решениями
осенний тур, тренировочный вариант, 8-9 класс
НазадСколько существует разных способов разбить число 2004 на натуральные слагаемые, которые <i>приблизительно равны</i>? Слагаемых может быть одно или несколько. Числа называются <i>приблизительно равными</i>, если их разность не больше 1. Способы, отличающиеся только порядком слагаемых, считаются одинаковыми.
Имеется несколько городов, некоторые из них соединены автобусными маршрутами (без остановок в пути). Из каждого города можно проехать в любой другой (возможно, с пересадками). Иванов купил по одному билету на каждый маршрут (то есть может проехать по нему один раз всё равно в какую сторону). Петров купил <i>n</i> билетов на каждый маршрут. Иванов и Петров выехали из города <i>A</i>. Иванов использовал все свои билеты, новых не покупал и оказался в другом городе <i>B</i>. Петров некоторое время ездил по купленным билетам, оказался в городе <i>X</i> и не может из него выехать, не купив новый билет. Докажите, что <i>X</i> – это либо <i>A</i>, либо <i>B</i>