Олимпиадные задачи из источника «осенний тур, основной вариант, 8-9 класс» для 10-11 класса - сложность 2-5 с решениями
осенний тур, основной вариант, 8-9 класс
НазадУ первоклассника имеется сто карточек, на которых написаны натуральные числа от 1 до 100, а также большой запас знаков "+" и "=". Какое наибольшее число верных равенств он может составить? (Каждая карточка используется не более одного раза, в каждом равенстве может быть только один знак "=", переворачивать карточки и прикладывать их для получения новых чисел нельзя.)
Натуральные числа <i>a, b, c, d</i> таковы, что наименьшее общее кратное этих чисел равно <i>a + b + c + d</i>.
Докажите, что <i>abcd</i> делится на 3 или на 5 (или на то и другое).
Между двумя параллельными прямыми расположили окружность радиуса 1, касающуюся обеих прямых, и равнобедренный треугольник, основание которого лежит на одной из прямых, а вершина – на другой. Известно, что треугольник и окружность имеют ровно одну общую точку и что эта точка лежит на вписанной окружности треугольника. Найдите радиус вписанной окружности треугольника.