Олимпиадные задачи из источника «осенний тур, основной вариант, 8-9 класс» для 5-7 класса - сложность 1-2 с решениями

Первоначально на каждом поле доски 1×<i>n</i> стоит шашка. Первым ходом разрешается переставить любую шашку на соседнюю клетку (одну из двух, если шашка не с краю), так что образуется столбик из двух шашек. Далее очередным ходом каждый столбик можно передвинуть в любую сторону на столько клеток, сколько в нём шашек (в пределах доски); если столбик попал на непустую клетку, он ставится на стоящий там столбик и объединяется с ним. Докажите, что за  <i>n</i> – 1  ход можно собрать все шашки на одной клетке.

Последовательность {<i>x<sub>n</sub></i>} определяется условиями:   <i>x</i><sub><i>n</i>+2</sub> = <i>x<sub>n</sub></i> – <sup>1</sup>/<sub><i>x</i><sub><i>n</i>+1</sub></sub>   при  <i>n</i> ≥ 1.

Докажите, что среди членов последовательности найдётся ноль. Найдите номер этого члена.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка