Олимпиадные задачи из источника «осенний тур, основной вариант, 8-9 класс» для 2-7 класса - сложность 1-4 с решениями
осенний тур, основной вариант, 8-9 класс
НазадПервоначально на каждом поле доски 1×<i>n</i> стоит шашка. Первым ходом разрешается переставить любую шашку на соседнюю клетку (одну из двух, если шашка не с краю), так что образуется столбик из двух шашек. Далее очередным ходом каждый столбик можно передвинуть в любую сторону на столько клеток, сколько в нём шашек (в пределах доски); если столбик попал на непустую клетку, он ставится на стоящий там столбик и объединяется с ним. Докажите, что за <i>n</i> – 1 ход можно собрать все шашки на одной клетке.
Последовательность {<i>x<sub>n</sub></i>} определяется условиями: <i>x</i><sub><i>n</i>+2</sub> = <i>x<sub>n</sub></i> – <sup>1</sup>/<sub><i>x</i><sub><i>n</i>+1</sub></sub> при <i>n</i> ≥ 1.
Докажите, что среди членов последовательности найдётся ноль. Найдите номер этого члена.