Олимпиадные задачи из источника «10 класс» для 11 класса - сложность 4 с решениями
10 класс
НазадОбщие касательные к описанной и вневписанной окружностям треугольника $ABC$ пересекают прямые $BC$, $CA$, $AB$ в точках $A_1$, $B_1$, $C_1$ и $A_2$, $B_2$, $C_2$ соответственно. Треугольник $\Delta_1$ образован прямыми $AA_1$, $BB_1$ и $CC_1$, а треугольник $\Delta_2$ – прямыми $AA_2$, $BB_2$ и $CC_2$. Докажите, что радиусы описанных окружностей этих треугольников равны.
В треугольнике $ABC$ $\angle A=60^{\circ}$; $AD$, $BE$ и $CF$ – биссектрисы; $P$, $Q$ – проекции $A$ на $EF$ и $BC$; $R$ – вторая точка пересечения окружности $DEF$ с прямой $AD$. Докажите, что $P$, $Q$, $R$ лежат на одной прямой.
Точка $I$ – центр вписанной окружности треугольника $ABC$. Прямые, проходящие через точку $A$ параллельно $BI$, $CI$ пересекают серединный перпендикуляр к $AI$ в точках $S$, $T$ соответственно. Прямые $BT$ и $CS$ пересекаются в точке $Y$, а точка $A^$ такова, что $BICA^$ параллелограмм. Докажите, что середина отрезка $YA^*$ лежит на вневписанной окружности, касающейся стороны $BC$.