Олимпиадные задачи из источника «10 класс» для 6-9 класса - сложность 3 с решениями

Секущая пересекает первую окружность в точках $A_1, B_1$, а вторую – в точках $A_2, B_2$. Вторая секущая пересекает первую окружность в точках $C_1, D_1$, а вторую – в точках $C_2, D_2$. Докажите, что точки $A_1C_1\cap B_2D_2$, $A_1C_1\cap A_2C_2$, $A_2C_2\cap B_1D_1$, $B_2D_2\cap B_1D_1$ лежат на одной окружности, соосной с данными двумя.

Биссектриса угла $A$ треугольника $ABC$ ($AB>AC$) пересекает описанную окружность в точке $P$. Перпендикуляр к $AC$ в точке $C$ пересекает биссектрису угла $A$ в точке $K$. Окружность с центром в точке $P$ и радиусом $PK$ пересекает меньшую дугу $PA$ описанной окружности в точке $D$. Докажите, что в четырехугольник $ABDC$ можно вписать окружность.

В неравнобедренном треугольнике $ABC$ точки $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. Биссектриса угла $C$ пересекает прямые $A_0C_0$ и $B_0C_0$ в точках $B_1$ и $A_1$. Докажите, что прямые $AB_1$, $BA_1$ и $A_0B_0$ пересекаются в одной точке.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка