Олимпиадные задачи из источника «2020 год» для 10 класса - сложность 4 с решениями

Кузнечик прыгает по числовой прямой, на которой отмечены точки $-a$ и $b$. Известно, что $a$ и $b$ — положительные числа, а их отношение иррационально. Если кузнечик находится в точке, которая ближе к $-a$, то он прыгает вправо на расстояние, равное $a$. Если же он находится в середине отрезка $[-a;b]$ или в точке, которая ближе к $b$, то он прыгает влево на расстояние, равное $b$. Докажите, что независимо от своего начального положения кузнечик в некоторый момент окажется от точки 0 на расстоянии, меньшем $10^{-6}$.

Для каких $k$ можно закрасить на белой клетчатой плоскости несколько клеток (конечное число, большее нуля) в черный цвет так, чтобы на любой клетчатой вертикали, горизонтали и диагонали либо было ровно $k$ черных клеток, либо вовсе не было черных клеток?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка