Олимпиадные задачи из источника «11 класс, вариант А» для 2-10 класса - сложность 4 с решениями

На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает<i>n</i>точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (<i>n</i>+1)<sup>2</sup>попыток?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка