Олимпиадные задачи из источника «8 класс» для 2-9 класса - сложность 4 с решениями
8 класс
НазадНа шахматную доску произвольным образом уложили 32 доминошки (прямоугольника 1×2), так что доминошки не перекрываются. Затем к доске добавили одну клетку, как показано на рисунке. Разрешается вынимать любую доминошку, а затем класть её на две соседние пустые клетки. <img src="/storage/problem-media/105174/problem_105174_img_2.png"> Докажите, что можно расположить все доминошки горизонтально.
а) Из картона вырезали 7 выпуклых многоугольников и положили на стол так, что любые 6 из них можно прибить к столу двумя гвоздями, а все 7 нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.) б) Из картона вырезали 8 выпуклых многоугольников и положили на стол так, что любые 7 из них можно прибить к столу двумя гвоздями, а все 8 — нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)