Олимпиадные задачи из источника «1993 год» для 8-9 класса - сложность 3 с решениями
Али-Баба стоит с большим мешком монет в углу пустой прямоугольной пещеры размером <i>m×n</i> клеток, раскрашенных в шахматном порядке. Из любой клетки он может сделать шаг в любую из четырёх соседних клеток (вверх, вниз, вправо или влево). При этом он должен либо положить одну монету в этой клетке, либо забрать из неё одну монету, если, конечно, она не пуста. Может ли после прогулки Али-Бабы по пещере оказаться, что на чёрных клетках лежит ровно по одной монете, а на белых монет нет?