Олимпиадные задачи из источника «10. Спички как игрушки»

<b>Домашнее задание.</b>Повесьте ботинок со шнурками за боковую сторону стола (не за угол!) с помощью трех спичек.

12 спичками несложно ограничить квадрат площадью 9 клеточек со стороной в 1 спичку. А как ограничить теми же спичками фигуру с площадью 4 такие же клеточки? Спички нельзя ломать и накладывать одну на другую.

На столе лежат несколько тонких спичек одинаковой длины. Всегда ли можно раскрасить их концы  а) в 2,   б) в 3 цвета так, чтобы два конца каждой спички были разных цветов, а каждые два касающихся конца (разных спичек) – одного и того же цвета?

Сложите шесть спичек так, чтобы они образовали четыре равносторонних треугольника.

а) На столе лежат 111 спичек. Маша и Даша по очереди берут со стола по несколько спичек, но не больше десяти за один раз. Выигрывает тот, кто возьмет последнюю спичку. Кто победит при правильной игре? б) На полу лежат три кучки - из 3, 4 и 5 спичек. Теперь Маша и Даша за один раз могут взять любое количество спичек, но только из одной кучки. Кто выиграет на этот раз?

Сколько квадратов изображено на рисунке?<div align="center"><img src="/storage/problem-media/104030/problem_104030_img_2.gif"></div>

а) В конструкции на рисунке переложите две спички так, чтобы получилось пять равных квадратов. б) Из новой фигуры уберите 3 спички так, чтобы осталось только 3 квадрата.<div align="center"><img src="/storage/problem-media/104029/problem_104029_img_2.gif"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка