Олимпиадные задачи из источника «Кировская ЛМШ» для 8 класса - сложность 1 с решениями
В народной дружине 100 человек. Каждый вечер на дежурство выходят трое.
Можно ли организовать дежурство так, чтобы через некоторое время оказалось, что каждый дежурил с каждым ровно один раз?
Можно ли так расставить знаки "+" или "–" между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю?
В вершинах <i>n</i>-угольника стоят числа 1 и –1. На каждой стороне написано произведение чисел на её концах. Оказалось, что сумма чисел на сторонах равна нулю. Доказать, что a) <i>n</i> чётно; б) <i>n</i> делится на 4.
Можно ли составить магический квадрат из первых 36 простых чисел?
<i>Магический квадрат</i> – это квадратная таблица, заполненная числами, в которой суммы чисел во всех строках и столбцах равны.