Олимпиадные задачи из источника «выпуск 4» для 10 класса - сложность 2-4 с решениями
выпуск 4
Назада) Разбейте отрезок [0, 1] на чёрные и белые отрезки так, чтобы для любого многочлена <i>p</i>(<i>x</i>) степени не выше второй сумма приращений <i>p</i>(<i>x</i>) по всем чёрным отрезкам равнялась сумме приращений <i>p</i>(<i>x</i>) по всем белым интервалам.
(Приращением многочлена <i>p</i> по отрезку (<i>a, b</i>) называется число <i>p</i>(<i>b</i>) – <i>p</i>(<i>a</i>).) б) Удастся ли проделать аналогичную операцию для всех многочленов степени не выше 1995?
Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов.
Докажите, что для этой цели ему
а) достаточно четырёх взвешиваний и
б) недостаточно трёх.