Олимпиадные задачи из источника «выпуск 7»

В трапеции <i>ABCD  AB</i> – основание,  <i>AC = BC</i>,  <i>H</i> – середина <i>AB</i>. Пусть <i>l</i> – прямая, проходящая через точку <i>H</i> и пересекающая прямые <i>AD</i> и <i>BD</i> в точках <i>P</i> и <i>Q</i> соответственно. Докажите, что либо углы <i>ACP</i> и <i>QCB</i> равны, либо их сумма равна 180°.

На какое максимальное число частей могут разбить координатную плоскость <i>xOy</i> графики 100 квадратных трехчлёнов вида

<i>y = a<sub>n</sub>x</i>² + <i>b<sub>n</sub>x + c<sub>n</sub></i>  (<i>n</i> = 1, 2, ..., 100)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка