Олимпиадные задачи из источника «параграф 7. Теорема Менелая» для 10-11 класса - сложность 1-5 с решениями

Прямые <i>AA</i><sub>1</sub>,<i>BB</i><sub>1</sub>,<i>CC</i><sub>1</sub>пересекаются в одной точке <i>O</i>. Докажите, что точки пересечения прямых <i>AB</i>и <i>A</i><sub>1</sub><i>B</i><sub>1</sub>, <i>BC</i>и <i>B</i><sub>1</sub><i>C</i><sub>1</sub>, <i>AC</i>и <i>A</i><sub>1</sub><i>C</i><sub>1</sub>лежат на одной прямой (Дезарг).

Окружность <i>S</i> касается окружностей <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub> в точках <i>A</i><sub>1</sub> и <i>A</i><sub>2</sub>.

Докажите, что прямая <i>A</i><sub>1</sub><i>A</i><sub>2</sub> проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям <i>S</i><sub>1</sub> и <i>S</i><sub>2</sub>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка