Олимпиадные задачи из источника «параграф 2. Рекуррентные последовательности» для 6-9 класса - сложность 1 с решениями
параграф 2. Рекуррентные последовательности
НазадДокажите, что геометрическая прогрессия{<i>a</i><sub>n</sub>} =<i>bx</i><sub>0</sub><sup>n</sup>удовлетворяет соотношению (<a href="https://mirolimp.ru/tasks/161458">11.2</a>) тогда и только тогда, когда<i>x</i><sub>0</sub>-- корень характеристического уравнения (<a href="https://mirolimp.ru/tasks/161458">11.3</a>) последовательности {<i>a</i><sub>n</sub>}.
<i>Определение.</i>Последовательность чисел<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>,...,<i>a</i><sub>n</sub>,..., которая удовлетворяет с заданными<i>p</i>и<i>q</i>соотношению<div><table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"><td align="CENTER"> <i>a</i><sub>n+2</sub>=<i>p</i><i>a</i><sub>n+1</sub>+<i>q</i><i>a</i><sub>n</sub> </td><td> (<i>n</i>=0,1,2,...)</td> <td nowrap width="10" align="RIGHT"> (11.2)</td></tr> </tab...