Олимпиадные задачи по теме «Ряды» для 10 класса - сложность 3-4 с решениями
Ряды
Назада) В бесконечной последовательности бумажных прямоугольников площадь <i>n</i>-го прямоугольника равна <i>n</i>². Обязательно ли можно покрыть ими плоскость? Наложения допускаются.б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа <i>N</i> найдутся квадраты суммарной площади больше <i>N</i>?
Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями <i>d</i><sub>1</sub>, <i>d</i><sub>2</sub>, <i>d</i><sub>3</sub>, ... . Может ли случиться, что при этом сумма <sup>1</sup>/<sub><i>d</i><sub>1</sub></sub> + <sup>1</sup>/<sub><i>d</i><sub>2</sub></sub> + ... + <sup>1</sup>/<i><sub>d<sub>k</sub></sub></i> не превышает 0,9? Рассмотрите случаи:
а) общее число прогрессий конечно;
б) прогрессий бесконечное число (в этом случае условие нужно понимат...
Найдите суммы рядов а) <img align="absmiddle" src="/storage/problem-media/60427/problem_60427_img_2.gif">
б) <img align="absmiddle" src="/storage/problem-media/60427/problem_60427_img_3.gif">
в) <img align="absmiddle" src="/storage/problem-media/60427/problem_60427_img_4.gif"> (<i>r</i> ≥ 2).