Олимпиадные задачи по теме «Отношение эквивалентности. Классы эквивалентности» для 11 класса - сложность 3 с решениями

На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются <i>эквивалентными</i>, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.

  а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?

  б) Та же задача для <i>n</i> отмеченных точек.

Можно ли разбить все целые неотрицательные числа на 1968 непустых классов так, чтобы в каждом классе было хотя бы одно число и выполнялось бы следующее условие: если число <i>m</i> получается из числа <i>n</i> вычёркиванием двух рядом стоящих цифр или одинаковых групп цифр, то и <i>m</i>, и <i>n</i> принадлежат одному классу (например, числа 7, 9339337, 93223393447, 932239447 принадлежат одному классу)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка