Олимпиадные задачи по теме «Комбинаторика (прочее)» для 11 класса - сложность 3 с решениями
Комбинаторика (прочее)
НазадВ команде сторожей у каждого есть разряд (натуральное число). Сторож <i>N</i>-го разряда <i>N</i> суток дежурит, потом <i>N</i> суток спит, снова <i>N</i> суток дежурит, <i>N</i> – спит, и так далее. Известно, что разряды любых двух сторожей различаются хотя бы в три раза. Может ли такая команда осуществлять ежедневное дежурство? (Приступить к дежурству сторожа могут не одновременно, в один день могут дежурить несколько сторожей.)
2011 складов соединены дорогами так, что от каждого склада можно проехать к любому другому, возможно, проехав по нескольким дорогам. На складах находится по <i>x</i><sub>1</sub>, ..., <i>x</i><sub>2011</sub> кг цемента соответственно. За один рейс можно провезти с произвольного склада на другой по соединяющей их дороге произвольное количество цемента. В итоге на складах по плану должно оказаться по <i>y</i><sub>1</sub>, ..., <i>y</i><sub>2011</sub> кг цемента соответственно, причём
<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + ... + <i>x</i><sub>2011</sub> = <i>y</i><sub>1</sub> + <i>y<...
В стране две столицы и несколько городов, некоторые из них соединены дорогами. Среди дорог есть платные. Известно, что на любом пути из южной столицы в северную имеется не меньше 10 платных дорог. Докажите, что все платные дороги можно раздать 10 компаниям так, чтобы на любом пути из южной столицы в северную имелись дороги каждой из компаний.
На новом сайте зарегистрировалось 2000 человек. Каждый пригласил к себе в друзья по 1000 человек. Два человека <i>объявляются</i> друзьями тогда и только тогда, когда каждый из них пригласил другого в друзья. Какое наименьшее количество пар друзей могло образоваться?
По кругу стоит 99 тарелок, на них лежат булочки (на тарелке может быть любое число булочек или вовсе их не быть). Известно, что на любых 20 подряд идущих тарелках лежит суммарно хотя бы $k$ булочек. При этом ни одну булочку ни с одной тарелки нельзя убрать так, чтобы это условие не нарушилось. Какое наибольшее суммарное число булочек может лежать на тарелках?
Пусть $A$ — набор из $n>1$ различных натуральных чисел. Для каждой пары чисел $a,b\in A$, где $a < b$, подсчитаем, сколько чисел в $A$ являются делителями числа $b-a$. Какое наибольшее значение может принимать сумма полученных $\frac{n(n-1)}2$ чисел?
В стране, валюта которой — тугрики, ходят только купюры двух целочисленных достоинств. И покупатель, и продавец имеют достаточно много и тех, и других купюр, но при каждом платеже могут использовать вместе не более $k$ купюр (включая сдачу). Известно, что так можно сделать платёж на любую целую сумму от 1 до $n$ тугриков. Каково наибольшее возможное $n$ (в зависимости от $k$)?
Фокусник вместе со своим помощником собираются показать следующий фокус. Помощник надевает фокуснику повязку на глаза, приглашает на сцену случайного зрителя из зала и просит его написать последовательность из нулей и единиц длины $2^{2025}$. Затем помощник верно называет фокуснику номер и значение некоторого одного члена последовательности. Задача фокусника – отгадать $2025$ других членов последовательности (то есть назвать их номера и значения). Докажите, что они могут заранее договориться так, чтобы фокус удался.
Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна $p$ – 1.
На доске <i>n</i>×<i>n</i> расставлено <i>n</i> – 1 фишек так, что никакие две из них не стоят на соседних (по стороне) клетках.
Докажите, что одну из них можно передвинуть на соседнюю клетку так, чтобы снова никакие две фишки не стояли на соседних клетках.