Олимпиадные задачи по теме «Системы счисления» для 1-6 класса - сложность 3 с решениями

Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса?

Коля утверждает, что можно выяснить, делится ли на 101 сумма всех четырёхзначных чисел, в записи которых нет ни цифры 0, ни цифры 9, не вычисляя самой суммы. Прав ли Коля?

Доказать, что

  а) Степень двойки не может оканчиваться на четыре одинаковых цифры.

  б) Квадрат не может состоять из одинаковых цифр (если он не однозначный).

  в) Квадрат не может оканчиваться на четыре одинаковых цифры.

К 17-значному числу прибавили число, записанное теми же цифрами, но в обратном порядке.

Докажите, что хотя бы одна цифра полученной суммы чётна.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка